成人欧美一区二区三区黑人免费_亚洲永久无码7777KKK_国产欧美日韩综合精品一区二区_欧美在线一区二区三区

English | 中文版 | 手機版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 深度神經網絡助力對腫瘤細胞鑒定及空間惡性區(qū)域的識別

深度神經網絡助力對腫瘤細胞鑒定及空間惡性區(qū)域的識別

瀏覽次數(shù):1062 發(fā)布日期:2024-7-29  來源:本站 僅供參考,謝絕轉載,否則責任自負

在腫瘤相關單細胞轉錄組測序中,腫瘤細胞的甄別一直是一個讓人頭疼的問題。CNV可以用于區(qū)分腫瘤細胞和正常細胞,常用的inferCNV方法往往需要一個清晰的非腫瘤細胞注釋做為參考去佐證腫瘤細胞,CopyKAT對于細胞數(shù)量多的分析項目是極不友好的,時間成本消耗也是極高的。下面介紹一種新的腫瘤細胞預測的方法:Cancer-Finder,其可以應用于腫瘤細胞的鑒定和空間惡性區(qū)域的識別。

Cancer-Finder是一種基于深度學習算法,用于單細胞轉錄組數(shù)據腫瘤細胞預測和空間轉錄組數(shù)據惡性區(qū)域的識別的軟件,其平均預測精準度可以高達95.16%。Cancer-Finder收集13種不同腫瘤相關組織的單細胞數(shù)據集做為訓練數(shù)據集對腫瘤細胞進行預測。

img1

與當前一些腫瘤細胞預測手段,諸如:CaSee、CopyKAT、SCEVAN、ikarus等比較,Cancer-Finder分析時間花費的更少,效果更佳。Cancer-Finder使用Python語言編寫,也有著對計算機資源消耗相對較少的優(yōu)點。

img2

如何安裝?

基于Linux的軟件安裝:

1. 首先,下載Cancer-Finder到本地,并解壓,進入該目錄,你可看到如下文件結構,infer.py為預測腫瘤細胞程序。

img3

2. 然后,使用Conda安裝 Cancer-Finder。

a) 首先創(chuàng)建一個名字叫csf的虛擬環(huán)境并安裝3.9.16版本的python軟件:

conda create -n scf python==3.9.16

b) 然后激活scf虛擬環(huán)境:conda activate scf

c) 最后使用pip安裝Cancer-Finder所需模塊:

pip install -r requirements.txt -i 

pip install matplotlib==3.8 -i 

d) 注意事項:這里推薦使用Python的清華鏡像(-i 參數(shù)),安裝速度較快,matplotlib建議使用3.8版本。以上安裝步驟親測可用。

 

如何運行預測程序?

執(zhí)行下面一行代碼即可開啟分析。

python -u infer.py --ckp=../sc_pretrain_article.pkl --matrix=sample_data/sample_data_matrix.tsv --out=out.csv

--ckp參數(shù):用于預測腫瘤細胞或者區(qū)域的預訓練好的模型數(shù)據,存儲為.pkl格式文件。Cancer-Finder提供了預訓練完成的單細胞模型數(shù)據 sc_pretrain_article.pkl 和空間轉錄組模型數(shù)據 st_pretrain_article.pkl。

--matrix參數(shù):待注釋的表達矩陣文件,支持tsv、csv、h5ad格式的文件。

--out 參數(shù):結果輸出。

輸出結果一共兩列,如下圖,第一列為細胞信息,第二列為細胞對應預測結果信息,1.0代表被預測為腫瘤細胞,0.0代表被預測為非腫瘤細胞。從結果上看這里的目標是只需區(qū)分腫瘤細胞和非腫瘤細胞即可,其本質是機器學習中的深度神經網絡解決二元分類問題。

img4

 

如何訓練自己的模型數(shù)據?

Cancer-Finder提供的預訓練模型數(shù)據(單細胞和空間轉錄組模型數(shù)據)可能并不適用于某些領域的研究,所以提供了訓練私有模型的程序 train.py 。

python -u train.py  \

    --train_dir=\     

    --val_dir=\         

    --batch_size=\   

    --lr=\        

    --max_epoch=\    

    --output=\       

    --gpu_id=                

數(shù)據結構詳細請參考下載到本地的Cancer-Finder軟件包 data目錄。

 

實際效果如何?

使用GEO數(shù)據(GSE155446)比較預測結果。

python -u infer.py --ckp=sc_pretrain_article.pkl --matrix=GSE155446_human_raw_counts.csv --out=GSE155446_human.rs.tsv

img5

上圖中Pred標簽UMAP圖為使用Cancer-Finder對腫瘤細胞的預測結果的展示,1代表腫瘤細胞,0代表非腫瘤細胞;CellType標簽的UMAP圖為數(shù)據集提供的注釋結果展示。從UMAP圖上可以清晰看出Cancer-Finder預測的腫瘤細胞與注釋高度一致。接下來看下注釋結果與預測結果的比例情況,如下圖。

img6

從上圖可以看出Cancer-Finder識別出了極高比例的腫瘤細胞,從這個案例可以看出Cancer-Finder的效果是很好的,此數(shù)據接近4w的細胞數(shù)量,在幾分鐘內可以完成腫瘤細胞的識別,有著相當不俗的表現(xiàn)。在已知背景數(shù)據集中Cancer-Finder的預測能力是極好的,對于未知領域的數(shù)據可以綜合不同的算法交叉比較,大概率應該對個性化研究也會有著不錯的結果。

對于空間轉錄的數(shù)據,大家可以小試牛刀。

 

參考文獻:

Zhong, Z., Hou, J., Yao, Z. et al. Domain generalization enables general cancer cell annotation in single-cell and spatial transcriptomics. Nat Commun 15, 1929 (2024).

來源:上海生物芯片有限公司
聯(lián)系電話:400-100-2131
E-mail:marketing@shbiochip.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
成人欧美一区二区三区黑人免费_亚洲永久无码7777KKK_国产欧美日韩综合精品一区二区_欧美在线一区二区三区
av高潮| 精品盗摄女厕各类美女tp撒尿| 我淫我色亚洲色图| 亚洲av综合av一区二区三区| 欧美人妻一二区| 欧美jizz35性欧美| 久久久久蜜桃| 日韩av一区二区在线| 99久久国产精品免费热7788体验| 性高潮av| 啊灬啊灬啊灬啊灬快灬高| 肉色超薄丝袜脚交一区二区图片 | 男女爽爽免费视频| 日韩国产欧美精品| 国产特黄aaa大片免费观看| GOGO全球高清大胆国模| 人人妻人人澡人人爽va| 亚洲人妻少妇| 被强壮的公的侵犯伦理| 老熟妇高潮偷拍一区二区| 国产女人水真多18毛片18精品视频 | 中文字幕人妻在线| H文肉体暴力强伦轩| 国产精品69久久久| 欧美黑人性受xxxx精品| 国产精品suv一区| 樱桃视频高清免费观看在线| 中文字幕精品三区无码亚洲| 久久久综合婷婷精品国产一区影院| 精产国品一二三产区区| 国产亚洲精品久久久久秋| 国精产品一区一区三区视频| 人人妻日日摸狠狠躁视频| 精品无码人妻一区二区三区视频| 公和淑婷厨房猛烈进评价| 中文幕无线码中文字蜜桃| 99久久夜色精品国产9.9热人| 被男人吃奶高潮了下面好湿| 91精品国语高清自产拍| 精品人妻一区二区三区四区久久| 欧美性做爰大片免费看办公室|