成人欧美一区二区三区黑人免费_亚洲永久无码7777KKK_国产欧美日韩综合精品一区二区_欧美在线一区二区三区

English | 中文版 | 手機版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁 > 技術(shù)文章 > 表界面科學(xué)最新文獻(xiàn)QSense的解讀

表界面科學(xué)最新文獻(xiàn)QSense的解讀

瀏覽次數(shù):1884 發(fā)布日期:2019-12-4  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
百歐林簡報-表界面科學(xué)最新文獻(xiàn)- QSense -2019年第16期
 
  1. Name:Layer by Layer Antimicrobial Coatings Based on Nafion, Lysozyme, and Chitosan
AuthorsElla N. Gibbons, Charis Winder, Elliot Barron, Diogo Fernandes, Marta J. Krysmann, Antonios Kelarakis, Adam V. S. Parry and Stephen G. Yeates
JournalNanomaterials
  • 10.3390/nano9111563
  • The study focuses on the development of a new family of layer-by-layer coatings comprising Nafion, lysozyme and chitosan to address challenges related to microbial contamination. Circular dichroism was employed to gain insights on the interactions of the building blocks at the molecular level. Quartz crystal microbalance tests were used to monitor in real time the build-up of multilayer coatings, while atomic force microscopy, contact angle and surface zeta potential measurements were performed to assess the surface characteristics of the multilayer assemblies. Remarkably, the nanocoated surfaces show almost 100% reduction in the population of both Escherichia coli and Staphylococcus aureus. The study suggests that Nafion based synergistic platforms can offer an effective line of defence against bacteria, facilitating antimicrobial mechanisms that go beyond the concept of exclusion zone.
Linkhttps://www_mdpi.xilesou.top/2079-4991/9/11/1563
 
  1. Name:Clickable poly-l-lysine for the formation of biorecognition surfaces
AuthorsDaniele Di Iorio, Almudena Marti, Sander Koeman and Jurriaan Huskens
JournalRSC Advances
  • 10.1039/c9ra08714a
  • Biomolecules are immobilized onto surfaces employing the fast and stable adsorption of poly-L-lysine (PLL) polymers and the versatile copper-free click chemistry reactions. This method provides the combined advantages of versatile surface adsorption with density control using polyelectrolytes and of the covalent and orthogonal immobilization of biomolecules with higher reaction rates and improved yields of click chemistry. Using DNA attachment as a proof of concept, control over the DNA probe density and applicability in electrochemical detection are presented.
Linkhttps://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra08714a#!divAbstract
 
  1. Name:An ultrafast quartz crystal microbalance based on a frequency comb approach delivers sub-millisecond time resolution
AuthorsFrederick Meyer, Arne Langhoff, Antonio Arnau, Diethelm Johannsmann and Ilya Reviakine
JournalReview of Scientific Instruments
  • 10.1063/1.5115979
  • Quartz crystal microbalance with dissipation monitoring (QCMD) is a simple and versatile sensing technique with applications in a wide variety of academic and industrial fields, most notably electrochemistry, biophysics, quality control, and environmental monitoring. QCMD is limited by a relatively poor time resolution, which is of the order of seconds with conventional instrument designs at the noise level usually required. In this work, we present a design of an ultrafast QCMD with submillisecond time resolution. It is based on a frequency comb approach applied to a high-fundamental-frequency (HFF) resonator through a multifrequency lock-in amplifier. The combination allows us to reach data acquisition rates >10 kHz. We illustrate the method using a toy model of a glass sphere dropped on the resonator surfaces, bare or coated with liposomes, in liquid. We discuss some interesting features of the results obtained with the dropped spheres, such as bending of the HFF resonators due to the impact, sphere bouncing (or the absence of it), and contact aging.
Linkhttps://aip_scitation.xilesou.top/doi/abs/10.1063/1.5115979
 
  1. Name:Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents
AuthorsPaul A. Dalgarno, José Juan-Colás, Gordon J. Hedley, Lucas Piñeiro, Mercedes Novo, Cibran Perez-Gonzalez, Ifor D. W. Samuel, Mark C. Leake, Steven Johnson, Wajih Al-Soufi, J. Carlos Penedo and Steven D. Quinn
JournalScientific Reports
  • 10.1038/s41598-019-49210-0
  • The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.
Linkhttps://www.nature.com/articles/s41598-019-49210-0
 
  1. Name:A fundamental study of adsorption kinetics of surfactants onto metal oxides using quartz crystal microbalance with dissipation (QCM-D)
Authors Sandra C.Medina, Andreia S.F.Farinha, Abdul-Hamid Emwas, Assiyeh Tabatabai and TorOve Leiknes
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
  • 10.1016/j.colsurfa.2019.124237
  • Membrane fouling challenges the viability of oil-field produced water (PW) treatment with ceramic membranes. Surfactants play an important role in irreversible fouling through adsorption phenomena. However, previous studies have shown contradictory results. Hence, a fundamental understanding of surfactants-metal oxides interactions is necessary.
Linkhttps://www.sciencedirect.com/science/article/pii/S0927775719312324
 
  1. Name:Understanding the cation dependent surfactant adsorption on clay minerals in oil recovery
Authors Zilong LiuZilong Liu, Murali K. Ghatkesar, Ernst J. R. Sudholter, Binder Singh and Naveen Kumar
JournalEnergy & Fuels
  • 10.1021/acs.energyfuels.9b03109
  • Surfactants have the ability to mobilize residual oil trapped in pore spaces of matrix rocks by lowering the oil-water interfacial tension, resulting in a higher oil recovery. However, the loss of surfactant by adsorption onto the rock surface has become a major concern that reduces the efficiency of the surfactant flooding process. In this study, the adsorption behavior of an anionic surfactant to a clay mineral surface was investigated by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) upon variation with different cation conditions. Through recording the change of frequency and dissipation of clay modified sensors, it allows us for a real-time quantitative analysis of the surfactant adsorption with nanogram sensitivity. The results revealed that the surfactant adsorption increased in a Ca2+ containing solution with increasing pH from 6 to 11, while from a Na+ containing solution more adsorption occurred at acidic conditions. The adsorbed amount went through a maximum (~200 mM) as a function of the Ca2+ concentration and the Voigt model suggested that multilayer adsorption of surfactants could be as many as 4-6 monolayers. Using mixed cation (Ca2+ and Na+) solutions, the amount of adsorbed surfactant decreased linearly with decreasing fraction of CaCl2, but Na+ competed for about ~30% adsorption sites. The importance of the presence of CaCl2 for the surfactant adsorption was stressed in high salinity and low salinity solutions in the presence and absence of Ca2+. Furthermore, increasing the temperature from 23 to 65 °C shows first a small increase of surfactant adsorption followed by a reduction about 20%. The obtained results contribute to a better understanding of surfactant adsorption on clay surfaces and guide to optimal flooding conditions with a reduced surfactant loss.
Linkhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.9b03109
發(fā)布者:瑞典百歐林科技有限公司
聯(lián)系電話:021-68370071/021-68370072
E-mail:vanilla.chen@biolinscientific.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
成人欧美一区二区三区黑人免费_亚洲永久无码7777KKK_国产欧美日韩综合精品一区二区_欧美在线一区二区三区
夜夜躁狠狠| 国产精品 色| 亚洲国产视频一区二区三区| 精品国产一区二区三区天美传媒 | 国产超碰人人| 激情 小说 亚洲 图片| 午夜福利电影合集| 国产精品午夜久久久久久99热| jizz国产免费| 亚洲欧美日韩综合俺去了| 亚洲国产精品国自产拍av秋霞| 337p亚洲欧洲色噜噜噜| sm调教片视频在线观看| 狠狠躁日本少妇A片| 91精品国产一区二区三区| av一区二区在线播放| 1000部毛片A片免费视频| 国精产品一区二区三区有限| 精品产国电影品一二三产区区别| 亚洲中文欧美日韩| 亚洲精品美女久久久| 最近2018中文字幕在线高清6| 麻豆产国品一二三产品区别| 日本少妇一区| B站刺激战场直播| 欧美性猛交xxxxx乱大交3免费| 欧美内射合集| 亚洲欧美日韩综合俺去了| 亚洲精品毛片av| 亚洲国产日韩a在线播放性色| 无码人妻精品一区二区三区99性 | 人妻熟女在线观看| 蜜桃视频在线观看视频| 内射专区| 日韩国产精品一区二区三区| 国产成人精品国内自产拍观看 | 日本欧美精91品成人久久久| 成人影院午夜| 91人妻一区二区三蜜桃| 亚洲熟女精品| 国产色婷婷一二三区|